

Characterization of Bound Magic States via the Kirkwood-Dirac Distribution

Peter (Songqinghao) Yang

Joint work with Jonathan J. Thio, Nicole Yunger Halpern, Stephan De Bievre, Crispin H. W. Barnes, and David R. M. Arvidsson-Shukur

Cavendish Laboratory, University of Cambridge

Stabilizer states

e.g.

$$Z|0\rangle = |0\rangle$$

$$\mathcal{S} = \langle Z \rangle$$

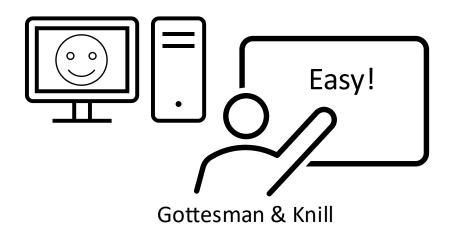
Stabilizer states

e.g.
$$|\Phi^+
angle = rac{1}{\sqrt{2}}\left(|00
angle + |11
angle
ight)$$
 $Z\left|0
angle = |0
angle$ $S = \langle Z_1Z_2, \, X_1X_2
angle$ $S = \langle Z
angle \qquad Z_1Z_2\left|\Phi^+
angle = |\Phi^+
angle \qquad X_1X_2\left|\Phi^+
angle = |\Phi^+
angle$

Stabilizer states

e.g.
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)$$
 $Z\left|0\right\rangle = |0\rangle$ $\mathcal{S} = \langle Z_1Z_2, X_1X_2\rangle$ $\mathcal{S} = \langle Z\rangle$ $Z_1Z_2\left|\Phi^+\right\rangle = |\Phi^+\rangle$ $X_1X_2\left|\Phi^+\right\rangle = |\Phi^+\rangle$

Stabilizer states



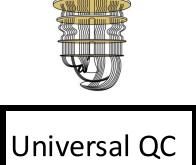
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

$$Z|0\rangle = |0\rangle$$

$$\mathcal{S} = \langle Z_1 Z_2, X_1 X_2 \rangle$$

$$S = \langle Z \rangle$$

$$\mathcal{S} = \langle Z \rangle$$
 $Z_1 Z_2 \ket{\Phi^+} = \ket{\Phi^+}$ $X_1 X_2 \ket{\Phi^+} = \ket{\Phi^+}$





Pure non-stabilizer states

e.g.

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

$$Z|0\rangle = |0\rangle$$

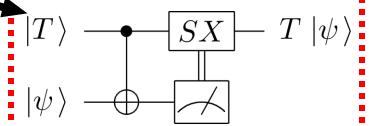
$$\mathcal{S} = \langle Z_1 Z_2, X_1 X_2 \rangle$$

$$\mathcal{S} = \langle Z \rangle$$

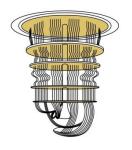
$$\mathcal{S} = \langle Z \rangle$$
 $Z_1 Z_2 \ket{\Phi^+} = \ket{\Phi^+}$ $X_1 X_2 \ket{\Phi^+} = \ket{\Phi^+}$

Stabilizer states

Clifford Operation



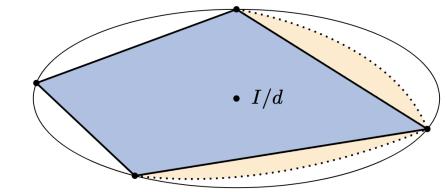
Magic State Injection



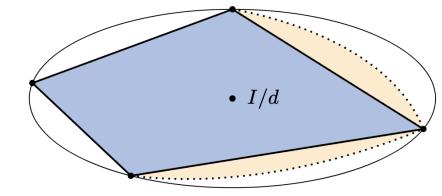
Pure non-stabilizer states

 $|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$ e.g. $T\ket{\psi}$ $Z|0\rangle = |0\rangle$ $\mathcal{S} = \langle Z_1 Z_2, X_1 X_2 \rangle$ $\mathcal{S} = \langle Z \rangle$ $Z_1 Z_2 | \Phi^+ \rangle = | \Phi^+ \rangle$ $X_1 X_2 | \Phi^+ \rangle = | \Phi^+ \rangle$ **Clifford Operation** Universal QC Magic State Injection Stabilizer states Hard! Easy!

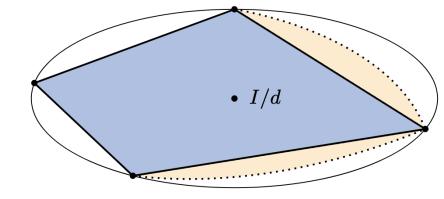
Gottesman & Knill



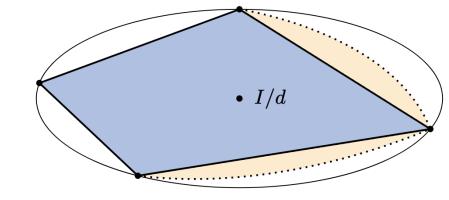
> Bravyi & Kitaev: Most non-stabilizer states are distillable magic states



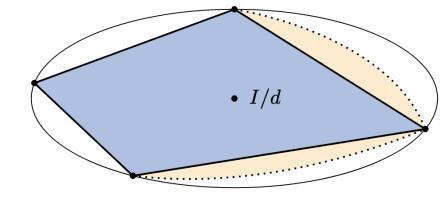
- ➤ Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- ➤ Campbell & Browne: There exist non-distillable, non-stabilizer states



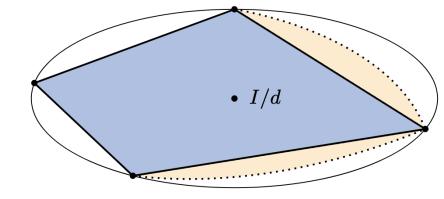
- ➤ Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- ➤ Campbell & Browne: There exist non-distillable, non-stabilizer states
- ➤ Veitch, Gross: There exist bound magic state in odd dimensions



- > Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- ➤ Campbell & Browne: There exist non-distillable, non-stabilizer states
- ➤ Veitch, Gross: There exist bound magic state in odd dimensions
- > Zurel: Pushed the idea to even dimensions

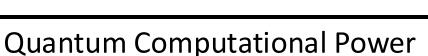


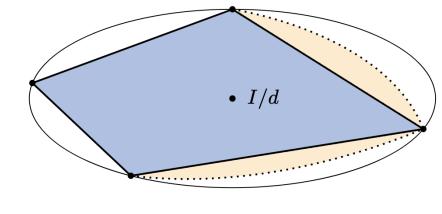
- > Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- ➤ Campbell & Browne: There exist non-distillable, non-stabilizer states
- ➤ Veitch, Gross: There exist bound magic state in odd dimensions
- > Zurel: Pushed the idea to even dimensions
- ➤ Why bound magic states? Knowing more bound magic states, we extend known classical simulability



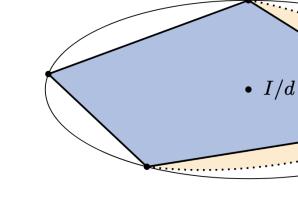
- ➤ Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- ➤ Veitch, Gross: There exist bound magic state in odd dimensions
- Zurel: Pushed the idea to even dimensions
- > Why bound magic states? Knowing more bound magic states, we extend known classical simulability

Supercomputer Operation : Cliffords



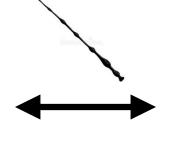


- ➤ Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- ➤ Veitch, Gross: There exist bound magic state in odd dimensions
- Zurel: Pushed the idea to even dimensions
- > Why bound magic states? Knowing more bound magic states, we extend known classical simulability



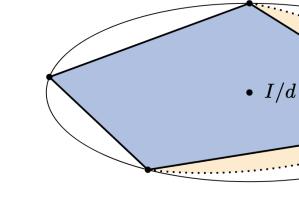
Supercomputer

Operation : Cliffords



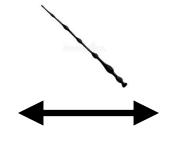
Quantum Computational Power

- > Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- Veitch, Gross: There exist bound magic state in odd dimensions
- Zurel: Pushed the idea to even dimensions
- > Why bound magic states? Knowing more bound magic states, we extend known classical simulability



Supercomputer

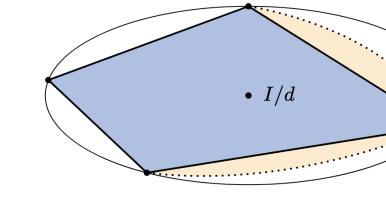
Operation : Cliffords



Quantum Computational Power

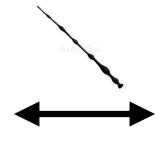
Stabilizer **States**

- > Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- Veitch, Gross: There exist bound magic state in odd dimensions
- > Zurel: Pushed the idea to even dimensions
- > Why bound magic states? Knowing more bound magic states, we extend known classical simulability



Supercomputer

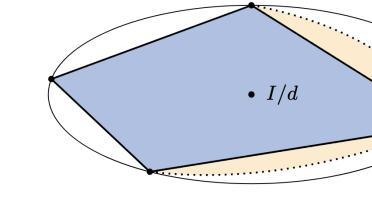
Operation : Cliffords



Quantum Computational Power

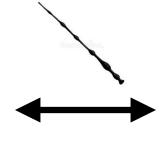
Wizards&Witches

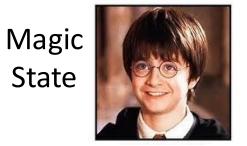
- Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- Veitch, Gross: There exist bound magic state in odd dimensions
- Zurel: Pushed the idea to even dimensions
- > Why bound magic states? Knowing more bound magic states, we extend known classical simulability



Supercomputer

Operation : Cliffords





Wizards&Witches

Quantum Computational Power

Bound Magic State

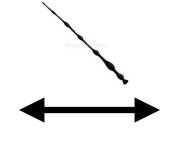
Squibs

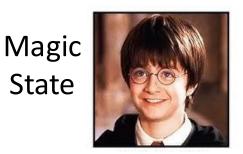
Stabilizer **States**

Muggles

- > Bravyi & Kitaev: Most non-stabilizer states are distillable magic states
- Campbell & Browne: There exist non-distillable, non-stabilizer states
- Veitch, Gross: There exist bound magic state in odd dimensions
- > Zurel: Pushed the idea to even dimensions
- Why bound magic states? Knowing more bound magic states, we extend known classical simulability

Supercomputer Operation : Cliffords

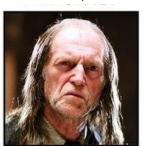




Wizards&Witches

Quantum Computational Power

Bound Magic State



Squibs

Stabilizer States

• *I*/*d*

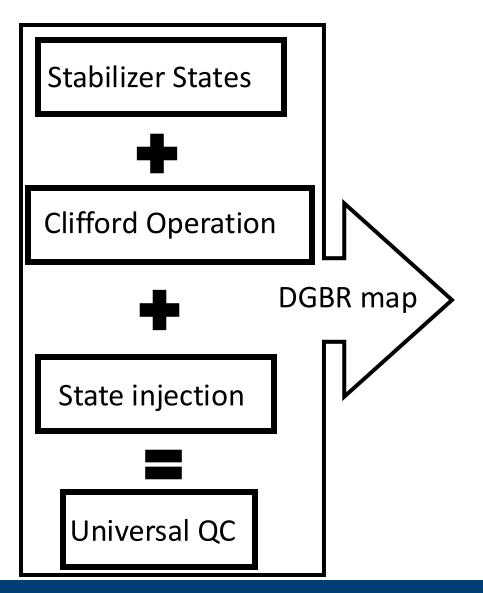
Muggles

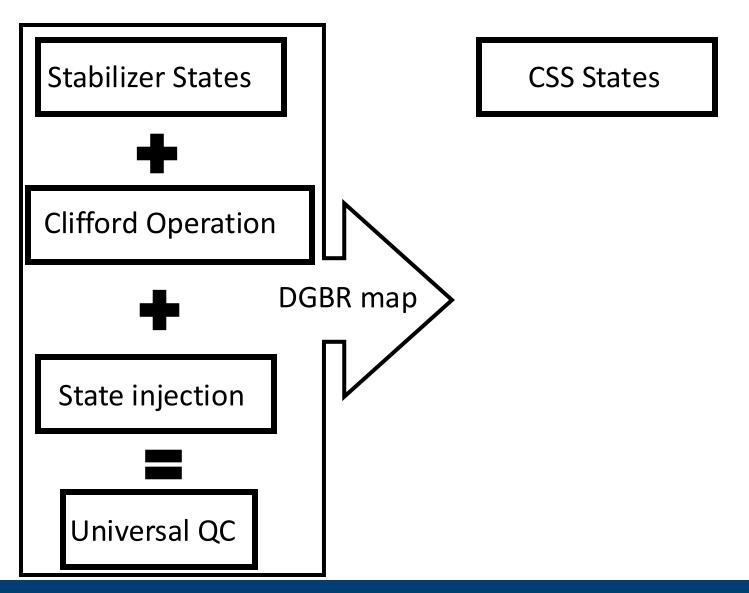
Stabilizer States

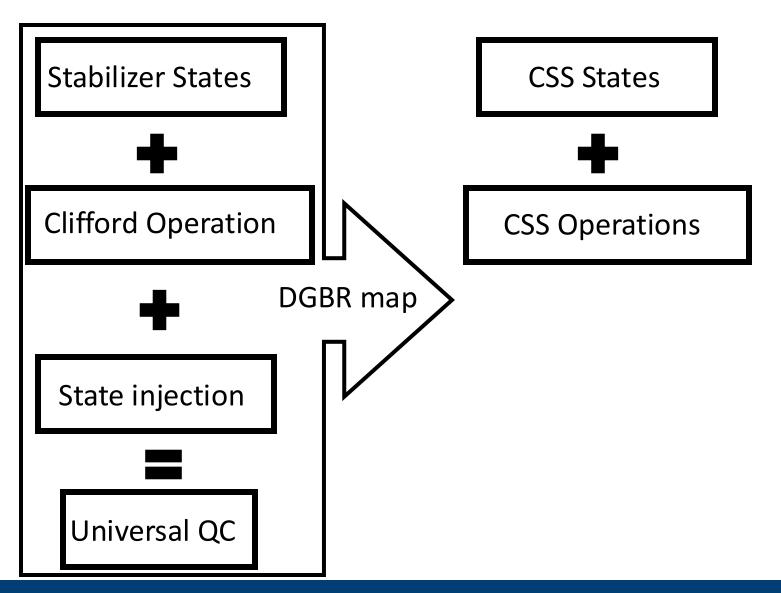
Clifford Operation

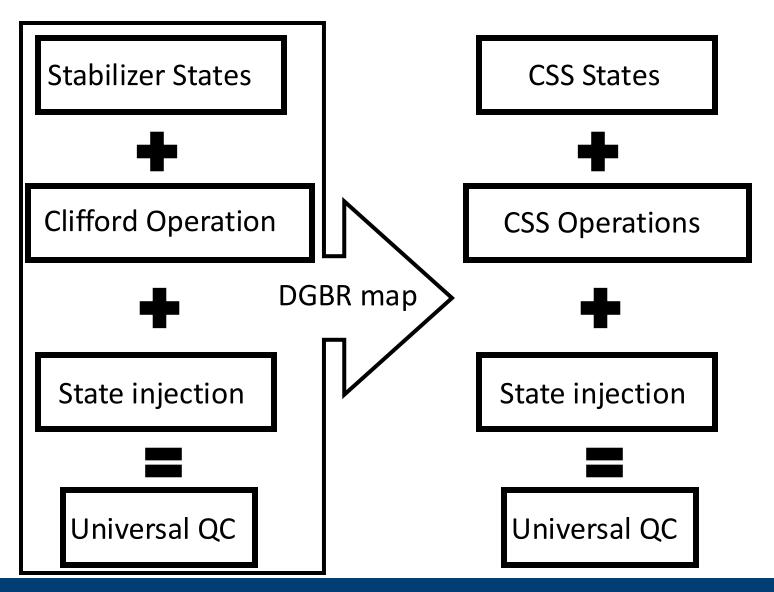
State injection

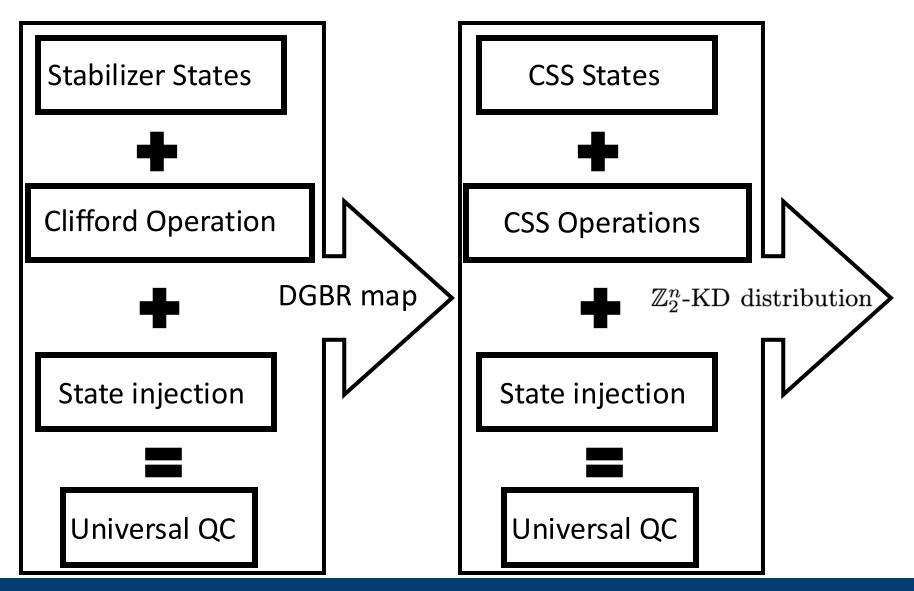
Universal QC

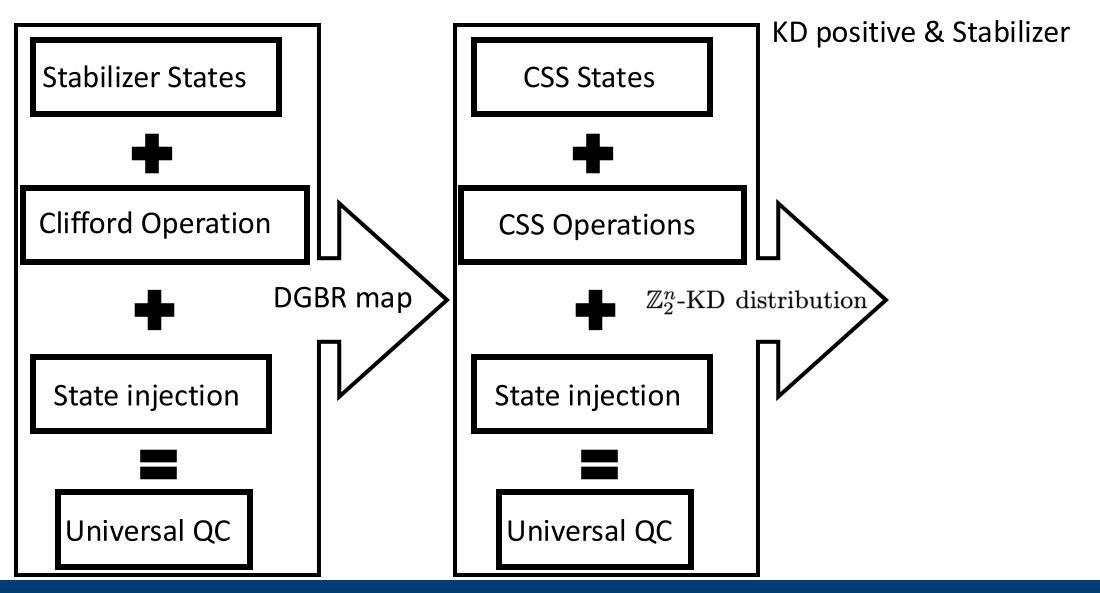




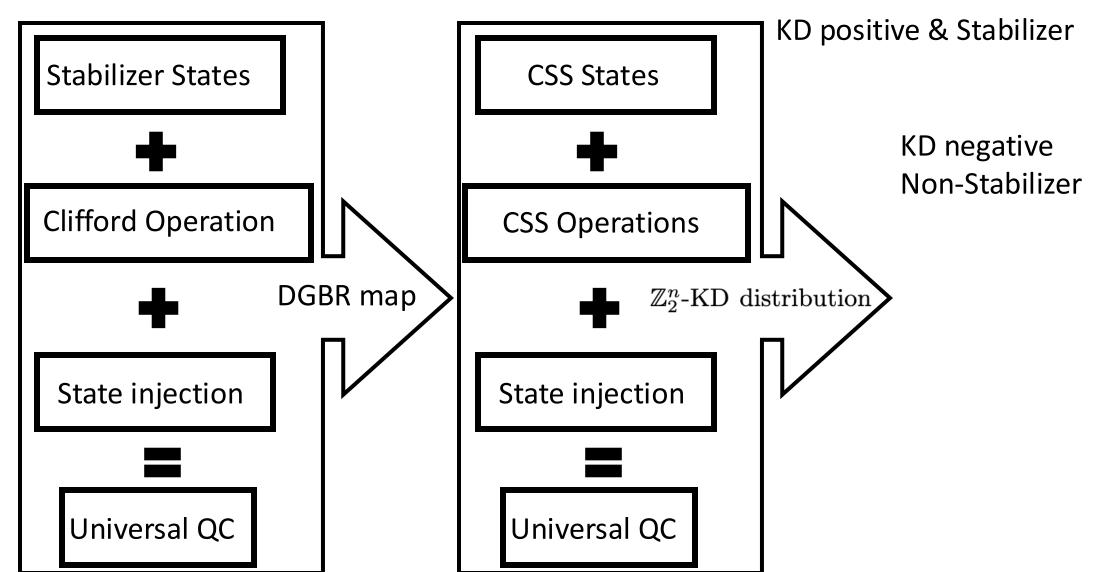






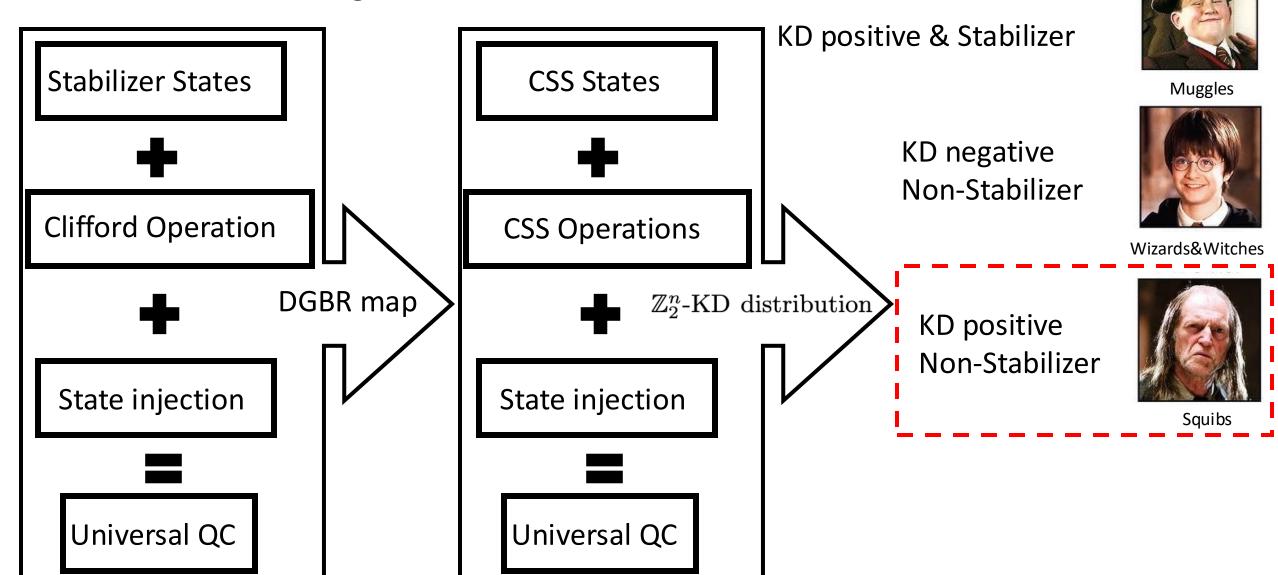


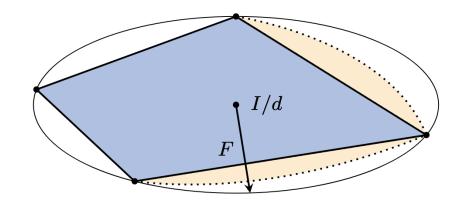
Muggles



Muggles

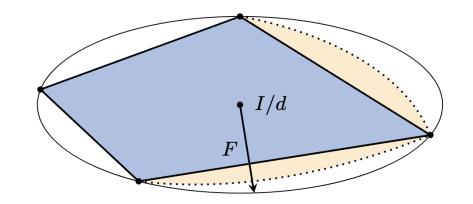
Wizards&Witches





Example:

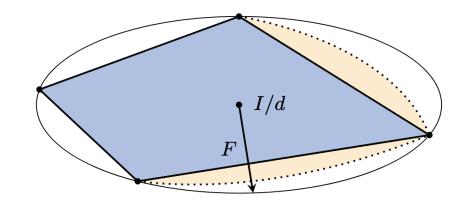
Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope



Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$



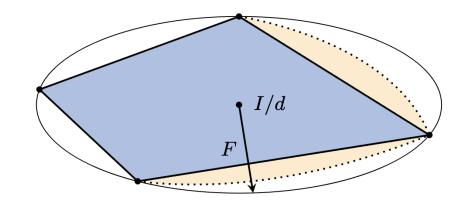
Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

Construct a state

$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$



Example:

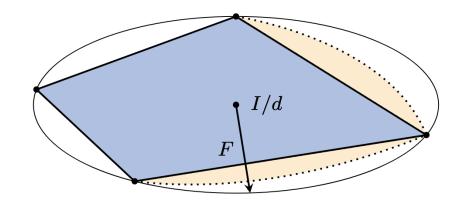
Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

Construct a state

$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$

 ρ_{λ} is KD-positive if $\lambda \in [0, 1/(4+8\sqrt{2})]$



Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

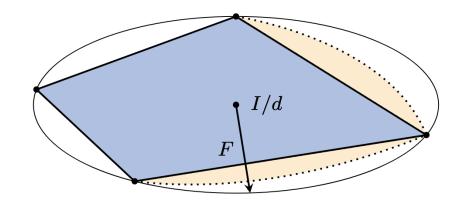
$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

Construct a state

$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$

 ρ_{λ} is KD-positive if $\lambda \in [0, 1/(4+8\sqrt{2})]$

lies outside the rebit stabilizer polytope for $\lambda > 1/20$



Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

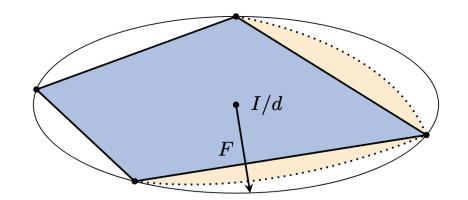
Construct a state

$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$

 ρ_{λ} is KD-positive if $\lambda \in [0, 1/(4+8\sqrt{2})]$

lies outside the rebit stabilizer polytope for $\lambda > 1/20$

Bound magic state if $\lambda \in (1/20, 1/(4+8\sqrt{2})]$



Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

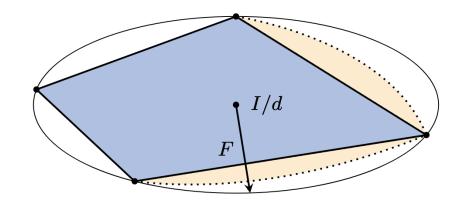
Construct a state

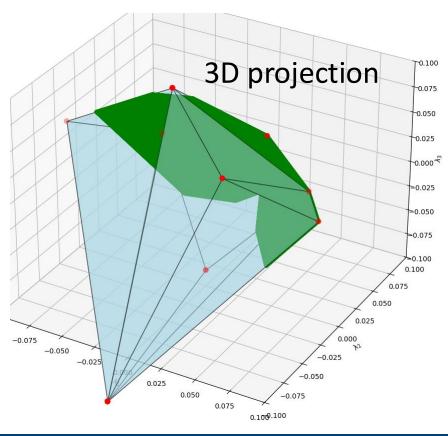
$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$

 ρ_{λ} is KD-positive if $\lambda \in [0, 1/(4+8\sqrt{2})]$

lies outside the rebit stabilizer polytope for $\lambda > 1/20$

Bound magic state if $\lambda \in (1/20, 1/(4+8\sqrt{2})]$





Example:

Let's choose a direction orthogonal to a facet of the CSS polytope and to a real ridge of the stabilizer polytope

$$F = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & -1 & -1 & -2 \\ 1 & -1 & -2 & -1 \end{pmatrix}$$

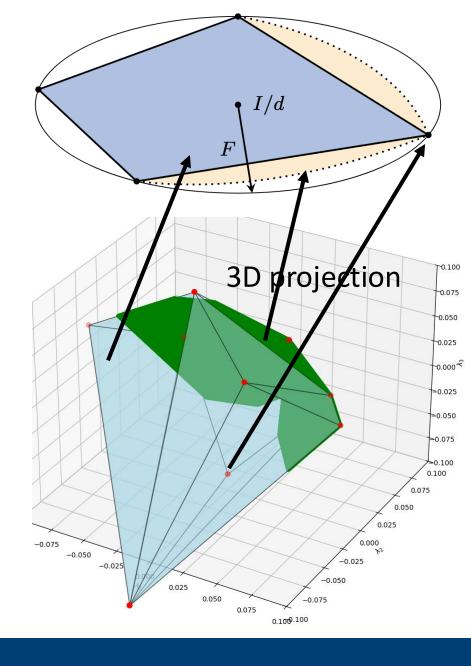
Construct a state

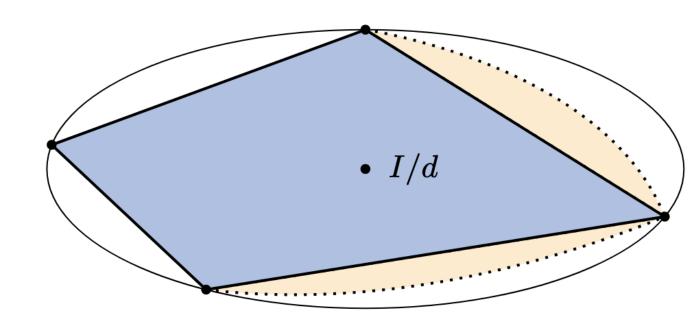
$$\rho_{\lambda} = \frac{1}{4}I + \lambda F$$

 ρ_{λ} is KD-positive if $\lambda \in [0, 1/(4+8\sqrt{2})]$

lies outside the rebit stabilizer polytope for $\lambda > 1/20$

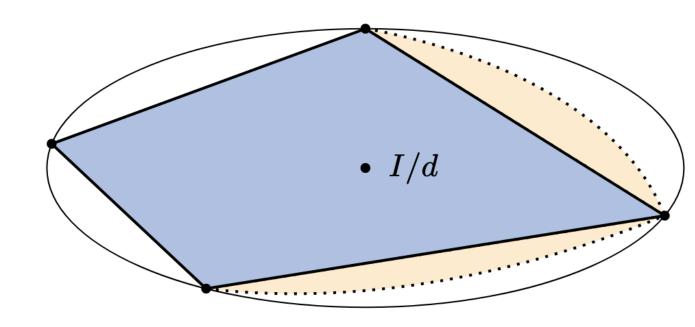
Bound magic state if $\lambda \in (1/20, 1/(4+8\sqrt{2})]$





Sampling a Random Rebit Density Matrix via Ginibre Ensemble

$$\rho = \frac{AA^{\top}}{\text{Tr}[AA^{\top}]}$$

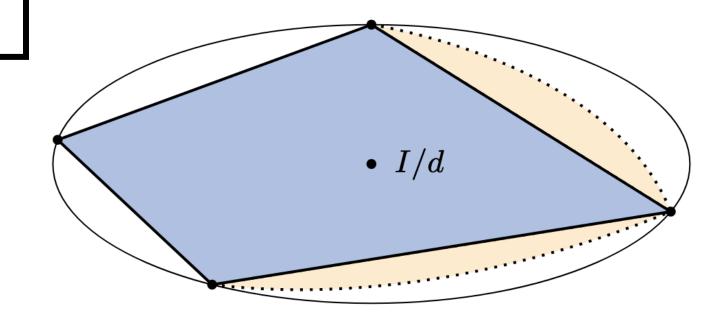


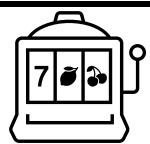
Sampling a Random Rebit Density Matrix via Ginibre Ensemble

$$\rho = \frac{AA^{\top}}{\text{Tr}[AA^{\top}]}$$

Are there any negative entries in the KD distribution?

Is this state a stabilizer state? (linear programming)



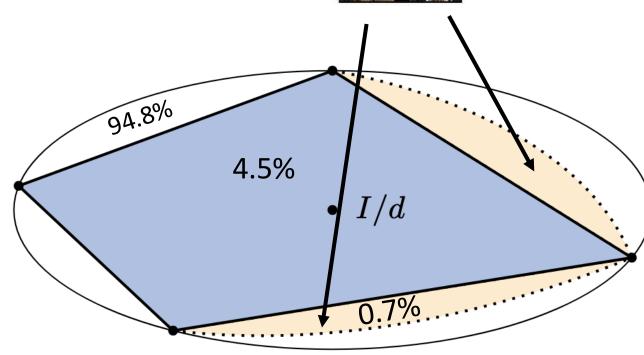


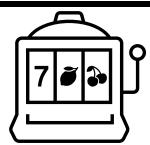
Sampling a Random Rebit Density Matrix via Ginibre Ensemble

$$\rho = \frac{AA^{\top}}{\text{Tr}[AA^{\top}]}$$

Are there any negative entries in the KD distribution?

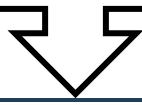
Is this state a stabilizer state? (linear programming)





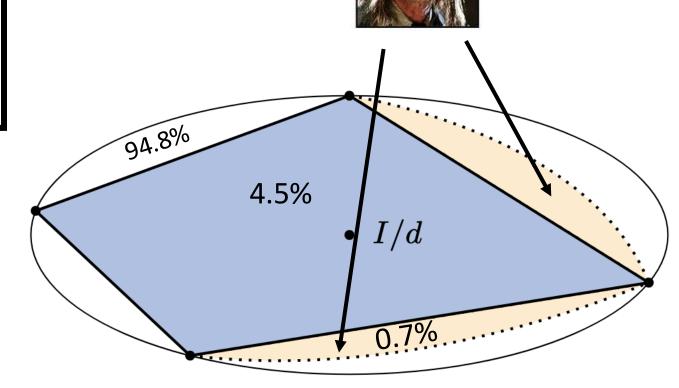
Sampling a Random Rebit Density Matrix via Ginibre Ensemble

$$\rho = \frac{AA^{\top}}{\text{Tr}[AA^{\top}]}$$



Are there any negative entries in the KD distribution?

Is this state a stabilizer state? (linear programming)



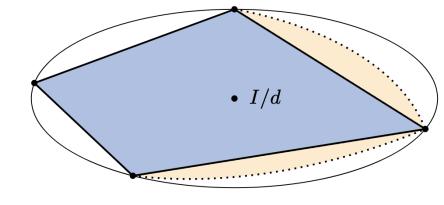
15% Extension of classical simulability!

Conclusion:



- ➤ With the KD distribution, we can find the bound magic states
- > By knowing more bound magic states, we can extend our classical simulability

Conclusion:



- ➤ With the KD distribution, we can find the bound magic states
- > By knowing more bound magic states, we can extend our classical simulability

arXiv:2506.08092 Thank you!

