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Abstract

Traditional imaging methods for closely spaced photon sources typically depend on detecting
their spatial intensity distribution. However, when the distance between these sources
decreases beyond a certain threshold, the information regarding their separation diminishes,
a phenomenon commonly known as "Rayleigh’s curse," governed by Rayleigh’s limit.

This study primarily aims to develop a quantum super-resolution algorithm with the fol-
lowing objectives: (i) overcoming the curse to precisely estimate the separation of incoherent
sources from a far field in the "sub-Rayleigh" regime, where conventional methods struggle
to differentiate two separate sources from a single light source due to extensive overlap, and
(ii) utilizing the interference pattern of photons reflected from two closely spaced objects
to explore their "sub-Rayleigh" features. The second task, owing to the coherent nature of
the interfering wavefronts, is termed "coherent estimation," while the first one is referred to
as "incoherent estimation." Specifically, quantum resources are employed in the parameter
estimation process to minimize errors beyond the reach of conventional methods.

In the realm of incoherent source separation estimation, my approach provides partial
immunity against Rayleigh’s curse, resulting in a quadratic enhancement in estimation preci-
sion. Additionally, in coherent estimation, the study demonstrates quadratic improvements in
precision scaling for sub-Rayleigh parameter estimation based on Quantum Fisher Informa-
tion, which sets an upper limit on estimation precision. To summarise, my results leverage
quantum phenomena to quadratically improve light detection in coherent and incoherent
settings.
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Chapter 1

Background

1.1 Introduction

In 1879, Lord Rayleigh introduced a criterion for evaluating the resolution of incoherent
imaging based on the separation of two distant photon sources. If these sources are positioned
closer than the width of their point spread function (which represents the response of the
optical imaging system to a point source), their detected images overlap significantly, making
them indistinguishable, as demonstrated in Fig 1.1. Therefore, resolution can be quantified by
how accurately one can estimate the separation between two point sources, with photon shot
noise being the most fundamental source of intensity measurement errors. By meticulously
measuring the intensity profile, resolution can be enhanced using statistical inference theory.

Helstrom [1] pioneered the statistical theory in 1969 and formulated the theory of quantum
detection and estimation, believing that quantum mechanics governs the fundamental limit of
resolution due to the quantum nature of light. He subsequently studied the problem of locating
an incoherent point source from far-field measurements as shown in Fig 1.2. Although he
showed that the quantum limit is close to the ideal performance of direct imaging [2], which
measures the intensity on the image plane, he did not propose an experimental setup.

Decades later, advancement by Tsang et al. [4] revealed a surprising insight: it is possible
to resolve two incoherent point sources by applying quantum estimation theory to outcomes
of far-field measurements. The efficacy of their methods, spatial-mode demultiplexing
(SPADE)1 as shown in Fig 1.3, has also been confirmed experimentally [5].

Their work demonstrated that measuring the photons from distant sources in a judicious
basis of spatial modes can approach the quantum limits and offer substantial improvements.
The quantum perspective has since inspired many follow-up studies and grown into a field of

1In this thesis, highlighted places are essential concepts to which the reader should pay extra attention or the
main results I have derived.
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Fig. 1.1 I simulate possible intensity distributions detected at the image plane in the grey
histogram. These distributions are modelled with Gaussian point spread functions (red and
blue) representing two photon sources (left and right). We employ Maximum Likelihood
Estimation (black line) for the Gaussian mixture model to illustrate the capability to resolve
these sources. Double the Rayleigh Limit separates the sources in the left plot. Here, we
observe two distinguishable peaks in the intensity distribution. On the top right, the sources
are separated by less than one Rayleigh limit, so we can no longer discern two peaks in the
intensity distribution.

research called quantum-inspired superresolution, potentially benefiting many applications
in astronomy as well as fluorescence microscopy. One of the most promising uses of
superresolution is range resolution, which is the ability to determine the distance between
two objects along the same line of sight when performing remote sensing. Jordan et al. [7]
dubbed it "super radar" and applied single parameter estimation to determine the spatial
difference between two closely positioned objects. Owing to the coherent nature of the
interfering wavefronts, I term it "coherent estimation". The pulses reflected from the two
objects at slightly different positions, as depicted in Fig 1.4, are analogous to the far-field
sources considered by Tsang. With quantum estimation theory, Jordan overcame the spatial
Rayleigh resolution limit and demonstrated several orders of magnitude improvements in
range resolution beyond known limits. This resolution improvement is essential for military
applications and has significant potential for probing minute objects such as silicon chips in
the semiconductor industry.

This thesis focuses on improving both Jordan’s "super radar" technique as well as Tsang’s
incoherent source separation estimation:

• The range resolution primarily concerns the challenge of estimating a single parameter,
the position difference between two objects. In the original paper [6], the authors
considered the interference of two pulses reflected from the two closely separated
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Fig. 1.2 Schematic diagram for direct imaging method. A distant source is focused on the
image plane, and data is collected to reconstruct the parameter of interest. Image adapted
from [3].

Fig. 1.3 Schematic diagram for SPADE. The distant source is decomposed into the different
spatial mode φn based on its point spread function. A photon counter subsequently detects
each mode, and the measurement results are processed with statistical theory. Image adapted
from [3].

Fig. 1.4 Schematic diagram for "super radar". A pulse (photon) is sent through and reflected
from the walls. The small distance difference l on the right is then estimated based on the
interference information. Conventionally, if l ≤ cτ/2, where c represents the speed of light
and τ denotes the pulse width, then the small separation could not be resolved easily, which is
the equivalent of Rayleigh’s curse in the incoherent source scenario. Image adapted from [6].
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objects with equal intensity. They also assumed that the exact position of the centre
of the two objects is known. However, this is not always the case, as the roughness
of the detected objects commonly causes energy loss of the incoming photon, thus
altering the intensity ratio compared to the original pulse. Moreover, it is hard to locate
the position, which I call the "centroid," where the reflections happen with certainty.
By relaxing these assumptions, this thesis delves into quantifying multi-parameter
estimation involving the separation, centroid, and intensity ratio. I demonstrate a
quadratic enhancement in quantum resolution compared to conventional imaging
methods. Additionally, I briefly explain why a single photon source is the necessary
experimental component for my theoretical findings.

• The reason to revisit Tsang’s work is that recent results showed that the quantum
advantage of SPADE vanishes in the presence of dark counts [8] or measurement
crosstalk [9] between different spatial modes. Meanwhile, the presence of thermal
background noise [10] questions the experimental feasibility of the estimation process
on two incoherent thermal point sources. Alternative quantum methods, such as
Quantum State Discrimination, largely mitigate these challenges. I draw inspiration
from prior research [11] and utilize the quantum framework to yield the essential
quantum advantage over classical imaging. I achieved a quadratic improvement in
the weak secondary source limit. That is to say, the intensity contrast between the
sources is high in my toy model. As is often the case in astronomical problems like
exoplanet search, the contrast between stars and their orbiting planets varies immensely,
ranging from 105 : 1 for hot gas giants resembling Jupiter to an astonishing 1010 : 1 for
cooler Earth-like worlds [12]. This model creates a considerable hurdle for SPADE
both experimentally and theoretically as the noise from photons arriving from the star
overwhelms the faint signal emitted by the exoplanet.

1.2 Background

In this section, I will outline the background necessary for grasping the subjects addressed
in this thesis. Initially, I provide a succinct overview of some critical concepts in quantum
mechanics and relate them to classical direct imaging. Subsequently, I will delve into
the fundamental theory behind quantum metrology, the quantum counterpart of parameter
estimation. Finally, the last section will focus on elucidating the formulation of hypothesis
decision theory in Quantum State Discrimination.



1.2 Background 5

1.2.1 Quantum Formalism

Quantum mechanics, in principle, is a statistical theory with probability distributions. The
probability density associated with a quantum state is called the density matrix, defined as
the outer product of the state with its conjugate transpose:

ρ̂pure = |Ψ⟩⟨Ψ| . (1.1)

This matrix must be positive semi-definite, Hermitian, and of trace one. However, not all
density matrices can be fully described with one state (pure states); a convex combination of
density matrices is required to fully describe a system (mixed states):

ρ̂mix = ∑
i

piρ̂i, ∑
i

pi = 1. (1.2)

From the axioms of quantum mechanics, a measurement is given by a Positive Operator Val-
ued Measure (POVM)—a collection of positive semi-definite operators, M̂ = {M̂1,M̂2, ...,M̂n},
that sum to the identity operator over the Hilbert space, ∑

n
i=1 M̂i = 1̂. According to the Born

rule, the probability outcome of one projective measurement M̂m will given outcome m with
probability:

Pr(m, ρ̂) = Tr[ρ̂M̂m]. (1.3)

Suppose we wish to take an intensity measurement of two distant incoherent sources. Fol-
lowing [13], we take the time window for detection sufficiently small that at most one photon
is detected at a time:

ρ̂ = (1−δ ) |vac⟩⟨vac|+δ ρ̂1 +O(δ 2). (1.4)

The coefficient δ << 1 is the average photon number per temporal mode. It is clear that
most of the photons are not collected, being in the |vac⟩⟨vac| vacuum state. The part we are
interested in is ρ̂1, the single-photon density operator. I should stress that a subtlety lies in
the difference between an Object Space state and an Image Space state [14], but I will not
address it here, and for the rest of the thesis, we can consider them as the same thing. For
incoherent scenes imaged in 1-dimension, the single-photon density takes the form:

ρ̂1 =
∫

∞

−∞

dx |Ψx⟩⟨Ψx| , |Ψx⟩=
∫

∞

−∞

dx′ψ(x′− x)
∣∣x′〉 . (1.5)

Physically, ψ(x) is the point spread function of the imaging system, and |x′⟩= â†(x′) |vac⟩ is
a 1-photon excitation of the Dirac delta mode δ (x′− x) at the location x in the image plane.
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Throughout the thesis, I assume a Gaussian normalized point spread function:

ψ(x) =
1

(2πσ2)1/4 e−
x2

4σ2 . (1.6)

Normalization condition is imposed with
∫

∞

−∞
ψ∗(x)ψ(x)dx = 1 and σ characterize the width

of the function, associated with the Rayleigh’s resolution limit. A distance smaller than the
limit is termed "sub-Rayleigh."

In classical direct detection, the intensity distribution is measured in the position basis,
POVMDD = {Π̂x = |x⟩⟨x|}. For instance, if we were to measure photons generated by two
incoherent sources with an equal probability, ρ̂1 =

1
2(|Ψleft⟩⟨Ψleft|+

∣∣Ψright
〉〈

Ψright
∣∣), then

the probability distribution of position space will yield:

Pr(|x⟩⟨x| , ρ̂1) = Tr[ρ̂1 |x⟩⟨x|] (1.7)

=
1
2
(| ⟨x|Ψleft⟩ |2 + |

〈
x
∣∣Ψright

〉
|2). (1.8)

Furthermore, |Ψleft⟩,
∣∣Ψright

〉
are the single-photon pure states for photons emitted by the

left and right source in the field respectively.

1.2.2 Quantum Metrology

The primary objective of quantum metrology is to achieve the highest possible accuracy in
estimating unknown parameters. By harnessing quantum resources as probes, achieving a
level of measurement precision that surpasses what can be attained through classical strategies
becomes feasible. Quantum parameter estimation constitutes a cornerstone of metrology, and
this section explains its general theory. I will introduce the pivotal theoretical tool within this
framework—Quantum Fisher Information.

Statisticians focus on efficiently inferring hidden parameters from a probabilistic dataset.
Quantum metrology is the quantum counterpart of the classical parameter estimation process.
Typically, a comprehensive quantum-metrological procedure comprises four stages: (1)
preparing the probe state; (2) parameterizing; (3) measuring; and (4) classical estimation, as
shown in Fig 1.5 [15].

Suppose an experimental realization gives a N-point data set xxx = {x1,x2, ...,xN}, corre-
sponding to the number of times the experiment is repeated. Each output xi, i = 1, ...,N is a
random variable independently and identically distributed according to the same probability
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Fig. 1.5 Generalized steps in quantum metrology. A state ρ is prepared and parameterized
with an unknown variable θ . A POVM operation Π is subsequently performed. The last step,
the classical estimation, is well-studied in the literature of classical statistics. The first three
steps are called quantum parameter estimation overall.

distribution, p(xxx|θθθ)2, conditioned on the unknown parameter θθθ . Then, the estimator, θ̂θθ , is
the method selected to obtain an estimate of θθθ . The estimator is precise if the probability
distribution has a small variance around its mean value:

Var(θ̂θθ) = E[(θ̂θθ −E[θ̂θθ ]2)]. (1.9)

I will make an additional assumption throughout the thesis that our estimator is unbiased,

E[(θ̂θθ −θθθ)] = 0. (1.10)

Helstrom formulated Fisher Information to explore the measured outcome’s sensitivity
to the unknown parameter. He sets a general lower bounds called Cramér-Rao bound on
the parameter estimation error; see Appendix A.2 for precise definitions. The simplest
Cramér-Rao bound for single parameter estimation is given as

Var(θ̂)≥ 1
NF(θ)

, (1.11)

where F(θ) is the Fisher Information, with N being the number of experiments performed.
In this thesis, we are more interested in multi-parameter estimation, and the multivariate
Cramér-Rao bound is:

Cov(θ̂θθ)≥ F−1(θθθ)

N
. (1.12)

Here, instead of variance, we have covariance as the error measure, and the inverse of Fisher
Information now becomes the inverse of Fisher Information Matrix F (θθθ). It is worth noting
that the error can reach the Cramér-Rao bound in many situations, including an asymptotic
limit where the sample size approaches infinity.

2Note here the bold symbol is a representation of a multi-parameter variable instead of a single-parameter
variable.



1.2 Background 8

The Quantum Fisher Information is the quantum analogue of the (classical) Fisher Infor-
mation, which characterizes the sensibility of a parameterized quantum state to parameter
changes. To this point, all theories define the bound on precision estimation for a given
measurement strategy (a given POVM). In quantum mechanics, however, we have infinite
choices of the measurement basis, and to maximize the Fisher Information, we need to find
the optimal strategy:

Q(ρ(θθθ)) = max
{Π̂xxx}

F (p(xxx|ρ(θθθ))). (1.13)

The probability distribution p(xxx|ρ(θθθ)) is naturally obtained from the POVM measure,
p(xxx|ρ(θθθ)) = Tr[ρ(θθθ)Π̂xxx], and again I consider the Quantum Fisher Information Matrix
Q(ρ(θθθ)) for the multi-parameter estimation. The multivariate Quantum Cramér-Rao bound
is given as,

Cov(θ̂θθ)≥ F−1(θθθ)

N
≥ Q−1(θθθ)

N
. (1.14)

The bound defines fundamentally the lowest error allowed by the laws of physics for any
unbiased estimator. For any choice of quantum measurement that one may apply (any POVM),
the Quantum Cramér-Rao bound establishes the minimum achievable uncertainty on an
unbiased parameter estimate. The second inequality results from the fact that measurements
can not extract more information than the quantum state. Nevertheless, we should note that
the optimal POVM is sometimes hard to calculate and perform experimentally. More details
are included in Appendix A.

The quantum advantage becomes clearer when illustrated with an example. I adopt the
spatial mode measurement proposed by Tsang [4] as the quantum method to estimate the
separation between two incoherent sources. I follow the convention of using the position
basis as the POVM for classical direct imaging. To compare the estimate’s precision, which
is the source separation, we need to characterize the variance with Fisher Information. The
specifics of Fisher Information depend on the point spread function, which we assume here
to be Gaussian. However, the general behaviour follows: The Fisher Information remains
relatively constant if the sources are well separated relative to Rayleigh’s criterion. However,
when the separation is close to Rayleigh’s criterion or begins to violate it (smaller than the
Rayleigh limit), the available information decays to zero, leading to the variance ballooning.
However, when measured in the spatial mode, explicitly using the Hermite-Gauss basis
for a Gaussian point spread function, the Quantum Fisher Information remains constant
and unified upon normalization. This results in a constant variance, as depicted in Fig 1.6.
However, I should inform the readers that the Hermite-Gauss mode conversion is similar to
the Fourier transformation and hard to implement experimentally. The detailed calculation is
provided in Appendix A.3.
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Fig. 1.6 A visualization of the Fisher Information of both direct detection (classical) and
imaging in the Hermite-Gauss (HG) model basis (the optimal basis). I assume a Gaussian
normalized point spread function with σ (Rayleigh’s limit). Variance is lower bounded by
the inverse of Fisher Information; thus, when the separation is small, the variance diverges
for direct imaging. The separation (x-axis) is expressed in the unit of Rayleigh’s limit. The
Fisher Information on the y-axis is in the scale of the Fisher Information for the quantum
method as shown in A.3. The grey dashed lines are regions of the quantum advantage
indicated by the red arrow. The purple arrow indicates where Rayleigh’s curse occurs when
the separation is small.

1.2.3 Hypothesis Testing

In Section 1.1, I outlined the shortcomings of the SPADE method. An alternative approach
lies in hypothesis testing, a sub-branch of Quantum State Discrimination. Hypothesis testing
preserves the quantum advantage over classical strategies and offers ease of experimental
implementation while circumventing the challenges encountered with SPADE. This section
will explain how the parameter estimation problem simplifies into a hypothesis test and
seamlessly incorporates the incoherent estimation with quantum hypothesis testing.

Hypothesis testing entails making a binary decision between two exclusive possibilities:
H0 (the null Hypothesis) and H1 (the alternative Hypothesis). For example, in [11], the
authors considered two incoherent sources, the binary system of a bright star and a dim
planet, as a toy model. In this star-exoplanet model, they tried to determine whether there is
(H1) or is not (H0) a planet orbiting a distant star as depicted in Fig 1.7 based on collected
data. Due to limited data, this decision is prone to errors. Given the rarity of exoplanets,
the aim is to minimize the risk of false negatives (type-II errors, β ) while being somewhat
tolerant of false positives (type-I errors, α) as long as they remain below a specified threshold
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Table 1.1 Summary of scenarios that could happen in the described hypothesis test and the
associated event probability.

H0, no planet H1, with planet
Reject H0 Type-I error, False positive α correct decision 1−β

Accept H0 correct decision 1−α Type-II error, False negative β

Fig. 1.7 Hypothesis H0 is that only one source (a), the star, is present of intensity Ns.
Hypothesis H1 is that both sources are present (b), with total intensity Ns and relative
intensity ε/(1− ε)≪ 1. The two sources are separated by s.

to prevent excessive data analysis. The potential hypothesis outcomes are summarized in
Table 1.1.

Suppose one measure N identical copies of an unknown single-photon field state (either
ρ0 or ρ1) and the type-I error is restricted to αN ∈ (0,γ), with γ < 1 so as not to cause too
much trouble with false positives. The minimum probability of error for discriminating
whether the field state is ρ0 or ρ1 asymptotically follows the Quantum Stein’s Lemma [16]
with large N [16, 17],

βN ∼ exp[−ND(ρ0||ρ1)] (1.15)

where D(ρ0∥ρ1) = Tr[ρ0(lnρ0− lnρ1)]. (1.16)

Here, D(ρ0||ρ1) is the Umegaki quantum relative entropy [18].
Finally, to demonstrate the quantum advantage over the classical method, we must define

the classical counterpart of the type-II error bound. It simply involves replacing ρ0 and ρ1

with the classical probability distribution p0 and p1, the chances that H0 and H1 happen,
respectively. The exponent in the bound thus becomes the classical relative entropy D(p0∥p1).
The trace operation consequently changes to an integration.



Chapter 2

Main Result

In this section, I will introduce two toy models for the incoherent and coherent estimations.
I remind the reader that the ultimate goals of this thesis are: To precisely estimate the
separation between two incoherent sources upon measuring the incoming photons, where the
second source’s intensity is comparably weaker, to assess the spatial characteristics between
two closely positioned objects by analyzing the interference patterns generated by photons
reflected from each object.

2.1 Incoherent Estimation

I will examine on the first problem with a simple Star-Exoplanet toy model. Photons are
scattered by the star and planet in the binary system and subsequently detected on one’s
image plane. My scheme is much easier to implement than the SPADE method, which
explicitly requires image inversion of the spatial modes. The quantum advantage remains
during parameter estimation over the conventional approach.

2.1.1 Star-Exoplanet Model

We adopt an idealized approach, envisioning the star and the exoplanet as coherent quasi-
monochromatic thermal point sources [19]. I disregard the sources’ finite size and polychro-
matic emission spectra in this simplification. Additionally, I assume a static scene throughout
the measurement period, disregarding the orbital dynamics of the planet around the star at
the timescale of detection. Under these assumptions, the scene is fully characterized by the



2.1 Incoherent Estimation 12

parameters θθθ = {rs,rc,ε},

rstar ≡ rc +
rs

2
, (2.1a)

rplanet ≡ rc−
rs

2
, (2.1b)

ε ∈ (0,1). (2.1c)

Here, rs and rc are the separation and centre of the system when mapped to the focal plane,
respectively. I define ε as the normalized brightness of the exoplanet: the star and the planet
have ε and 1− ε as intensity coefficients, respectively, that sum to unity. Therefore, the toy
model, assuming equal and unit variance, has the density matrix:

ρ = (1− ε) |ψstar⟩⟨ψstar|+ ε
∣∣ψplanet

〉〈
ψplanet

∣∣ , (2.2)

|ψstar(rstar)⟩=
∫

∞

−∞

dx
1

(2π)1/4 e−
(x−rstar)2

4 |x⟩ , (2.3)

∣∣ψplanet(rplanet)
〉
=
∫

∞

−∞

dx
1

(2π)1/4 e−
(x−rplanet)

2

4 |x⟩ . (2.4)

In this work, I will assume that the system’s centre is at the origin of the transverse
coordinate system, rc = 0, which is reasonable as stated in [4]. I also focus on the 1-
dimensional case only. In the meantime, we point the curious reader to [20] for an exciting
discussion on how the interdependence of rs, rc, and ε manifests in the Fisher Information
for the three-dimensional counterpart.

In conventional imaging, a converging optical system creates a focused image of an object
on the image screen. The separation between the star and planet is thus approximated as the
angular width r ≈ rs/D where D is the distance to the emitter1. Moreover, the Rayleigh’s
limit, due to diffraction on the aperture of the imaging system, is Ry = 1.22λ/R∼ σ , where
λ is the wavelength of the photon, R the size of the aperture and σ the characteristic width
of the point spread function. When the angular width is comparable to or smaller than
the Rayleigh length (r << σ ), in the "sub-Rayleigh" region, direct imaging in a position
basis no longer works for separation estimation. Although the SPADE method improved the
resolution, a dim exoplanet in the proximity of a much brighter stellar source poses practical
challenges to the quantum imaging measured in spatial modes. The alternative approach
to avoid the experimental difficulty and demonstrate quantum advantage is the hypothesis
testing described in Sec 1.2.3. However, unlike the previous hypothesis test, which is used
for exoplanet "detection", I propose an exoplanet "localization" scheme with my Adaptive

1Without loss of generality, I will interchange the term angular width with separation here.
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Table 2.1 Summary of scenarios that could happen in my proposed hypothesis test and the
associated event probability.

H0,rest < r H1,rest ≥ r
Reject H0 Type-I error, False positive α correct decision 1−β

Accept H0 correct decision 1−α Type-II error, False negative β

Hypothesis Testing, as summarized in Algorithm 1. The main difference here is that the null
hypothesis is now changed to a scenario where the star and the planet are separated by an
estimated value rest, which has to be smaller than the actual separation r. Different types
of error are summarized in Table 2.1. My algorithm can effectively localize the position
of the system instead of just detecting the presence of the weaker source. In other words,
I am updating the measuring operators based on the data collected from the previous test,
eventually leading to an optimal POVM for the measurement.

Algorithm 1: Adaptive Hypothesis Testing

Data: Set an empty array {r(1)est ,r
(2)
est ..r

(N)
est } where N is the number of experiments

and r(τ)est the estimated separation in each iteration.
Set up the Star-Exoplanet toy model with state ρ(r);

Initialize guessed separation r(1)est < r;

Initialize worst-scenario POVM: M̂est(r
(1)
est ) = {M̂′star,M̂

′
planet,M̂

′
Fail};

Take measurements and obtain the probability distribution P(1)
star← Tr[ρ(r)M̂′star];

P(1)
planet← Tr[ρ(r)M̂′planet];

n← 1;
while n≤ N do

hypothesis test with distribution P(n)
star and P(n)

planet;
construct rtmp = |rstar− rplanet| from the probability distributions;
if Accept null hypothesis H0 then

r(n+1)
est ← rtmp;

take measurement with M̂est(r
(n+1)
est );

obtain the updated probability distribution P(n+1)
star and P(n+1)

planet ;
else

redo the experiment with a smaller rest
end
n← n+1;

end
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To be certain of the locations of the star and the planet in the toy model, one needs to know
from which source the collected photon is scattered. That is to say, one has to be conclusive in
differentiating the state |ψ(rstar)⟩ from

∣∣ψ(rplanet)
〉
. Discrimination is easy if the states are or-

thogonal: a projective measurement in the basis {|ψ(rstar)⟩⟨ψ(rstar)| ,
∣∣ψ(rplanet)

〉〈
ψ(rplanet)

∣∣}
will determine the state with certainty. However, in the ’sub-Rayleigh’ regime, the two states
overlap, resulting in the non-orthogonality,

d =
〈
ψ(rstar)

∣∣ψ(rplanet)
〉
=
∫

∞

−∞

dx
∫

∞

−∞

dx′ψ(x− rstar)
〈
x
∣∣x′〉ψ(x′− rplanet)

=
∫

∞

−∞

dx
∫

∞

−∞

dx′ψ(x− rc +
rs

2
)δx,x′ψ(x′− rc−

rs

2
)

=
∫

∞

−∞

dxψ(x− rc +
rs

2
)ψ(x− rc−

rs

2
)

= e−r2
s /8 = e−r2D2/8 > 0.

The best strategy now is to unambiguously discriminate the states at the cost of some-
times having an inconclusive result. This is achieved with the optimal POVM, M̂opt(r) =
{M̂star,M̂planet,M̂Fail}. Without loss of generality, we express the original states as:

|ψ(rstar)⟩=
√

1−|d|2
∣∣∣ψ(r⊥planet)

〉
+d
∣∣ψ(rplanet)

〉
, (2.5)∣∣ψ(rplanet)

〉
=
√

1−|d|2
∣∣∣ψ(r⊥star)

〉
+d |ψ(rstar)⟩ , (2.6)

where
〈

ψ(r⊥star)
∣∣∣ψ(rstar)

〉
= 0,

〈
ψ(r⊥planet)

∣∣∣ψ(rplanet)
〉
= 0. (2.7)

Then, the optimal POVM measure is chosen as:

M̂star(rstar) =
∣∣∣ψ(r⊥planet)

〉〈
ψ(r⊥planet)

∣∣∣ , (2.8)

M̂planet(rplanet) =
∣∣∣ψ(r⊥star)

〉〈
ψ(r⊥star)

∣∣∣ , (2.9)

M̂Fail = 1̂−λ1M̂star−λ2M̂planet, (2.10)

with an appropriate choice of λ1 and λ2 depending on the intensity difference while satisfying
that each element in the POVM is positive semi-definite.

For example, if a photon is detected with M̂star, then one is certain that the star scatters
the photon because the probability of the other state goes to zero, as shown in Fig 2.1,
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Fig. 2.1 Bloch sphere representation of states (in purple) and optimal POVM (in red) for
unambiguous quantum state discrimination on the states |ψ(rstar)⟩ and

∣∣ψ(rplanet)
〉
. The

circle is a projection representation of the 3D Bloch sphere. Note that on the Bloch sphere,
orthogonal states are antiparallel.

Tr[
∣∣ψ(rplanet)

〉〈
ψ(rplanet)

∣∣M̂star] = 0, (2.11)

Tr[|ψ(rstar)⟩⟨ψ(rstar)|M̂planet] = 0. (2.12)

However, without any prior knowledge of the system’s position, the measurement is
susceptible to errors, exemplified by Tr[

∣∣ψ(rplanet)
〉〈

ψ(rplanet)
∣∣M̂′star] ̸= 0. This discrepancy

arises because the states
∣∣ψ(rest⊥

star )
〉

and
∣∣∣ψ(rest⊥

planet)
〉

may not be orthogonal to |ψ(rstar)⟩ and∣∣ψ(rplanet)
〉
, respectively. Hence, I will employ Adaptive Hypothesis Testing to mitigate this

error.
The process begins with the implementation of the worst-case scenario POVM, denoted

as M̂est = {M̂′star,M̂
′
planet,M̂

′
Fail = 1̂− M̂′star− M̂′planet}, based on the estimated separation rest.

Subsequently, I will utilize Maximum Likelihood Estimation, a widely accepted technique
for estimating parameters within a presumed probability distribution, to analyze the observed
data.

Following this, conducting a hypothesis test on the derived probability distributions will
guide our decision to accept or reject the null hypothesis. If our estimated value falls short of
the separation, we proceed to the next iteration with an updated POVM. Conversely, if the
null hypothesis is invalidated, we adjust the initial estimation to an even smaller rest to restart
the process.
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Fig. 2.2 Schematic of two sources with a separation of rs, at a distance D from the collectors.
Two collectors at d1 and d2 direct light into a two-mode interferometer consisting of a phase
shift of α and a 50 : 50 beam splitter, followed by photon counters a and b. This is the optical
setup proposed by [21] to encode the parameters, the separation, and the intensity specifically,
of the two incoherent sources in the object plane to the image plane with d1, d2, and α .

Thus, by continually updating the separation parameter adaptively, I aim to align M̂est

more closely with M̂opt and bring rest closer to the actual value r with each iteration.
Physically, the POVM in each run is implemented by measuring the photons using the

setup illustrated in Fig 2.2. This optical conversion procedure combined with measurement
in position basis is equivalent to applying M̂est with a suitable choice of d1, d2 and α . This
approach reduced the experimental complexity for large-baseline devices, while the SPADE
method, suited for circular lenses and mirrors, is infeasible on a large scale.

Then after collecting the photons in the counter, one is supposed to reconstruct the
POVM by adjusting the parameters in the optical setup based on the estimated state ρ =

(1− ε) |ψest
star⟩⟨ψest

star|+ ε

∣∣∣ψest
planet

〉〈
ψest

planet

∣∣∣. The positions, assuming the centre of the system

lies at the origin, are rest
star =

rest

2 and rest
planet =

−rest

2 respectively. Meanwhile, the probability
that the photon is detected at detectors a or b is used to conduct the hypothesis test.

2.1.2 Result

The Summary of the result is displayed in Table 2.3. There are a few things worth noticing:

• The Adaptive Hypothesis Testing effectively addresses the practical limitations inherent
in the SPADE method.

• Within weak secondary source scenarios, the scaling (to be derived in this section) of
the type-II error exhibits a quadratic enhancement in the exponent when transitioning
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Fig. 2.3 Summary Table of Incoherent Estimation Results: The initial row presents three
distinct methods analyzed in this thesis. Upon evaluating their experimental feasibility, the
Adaptive Hypothesis Testing method exhibits an advantage over the SPADE method. As
elaborated in the subsequent section, our proposed approach demonstrates superior type-II
error scaling compared to classical methods in the weak secondary source limit. However,
discerning the enhancement in the variance of our estimator, as denoted by the purple circle,
may not be immediately apparent.

from the classical method to the quantum method. The boost bears a resemblance to
Grover’s algorithm [22], a renowned quantum search algorithm.

• However, as illustrated in Table 2.3, there is currently no discernible enhancement in
the precision of my estimator for parameter estimation. This aspect warrants further
numerical exploration, which I defer to future research endeavours.

In this toy model, envision an ideal experiment setup without any source of error. The
only concern now is reducing the type-II error during our hypothesis test. Therefore, I will
demonstrate how my quantum framework is inherently advantageous over the classical one.

The square of the Gaussian point spread function determines the intensity distribution on
the image screen:

p0(x) = (1− ε)|ψstar(x− rc)|2 + ε|ψplanet(x− rc− rest)|2. (2.13)

By contrast, the actual intensity profile is2

p1(x) = (1− ε)|ψstar(x− rc)|2 + ε|ψplanet(x− rc− r)|2, (2.14)

2Here I will interchange the angular width r with the transverse distance rs for simplicity.
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where ε << 1, denoting the normalized intensity of light scattered by the exoplanet. With
help of Eqn.(1.15), by requiring that the probability of a false positive, αN , stays bounded
away from 1, the probability βN of a false negative classically scales like:

lim
N→∞

1
N

lnβN =−D(p0∥p1), where D(p0∥p1) =
∫

dxp0(x) [lnp0(x)− lnp1(x)] . (2.15)

In Appendix B.2, I derived the following result:

D(p0∥p1) = (
er2

est + er2

2
− erestr)ε2 +O

(
ε

3) . (2.16)

To reduce the error, we want to increase the relative entropy D(p0∥p1). As the most prominent
term in Eqn.(2.16) is quadratic in ε , rest and r, this formally expresses the challenges of using
direct detection when the separation is small.

Now quantum mechanically, the two hypotheses are associated with the density matrices3:

ρ0 =(1− ε) |ψstar(x− rc)⟩⟨ψstar(x− rc)|+ ε
∣∣ψplanet(x− rc− rest)

〉〈
ψplanet(x− rc− rest)

∣∣ ,
(2.17)

ρ1 =(1− ε) |ψstar(x− rc)⟩⟨ψstar(x− rc)|+ ε
∣∣ψplanet(x− rc− r)

〉〈
ψplanet(x− rc− r)

∣∣ .
(2.18)

To calculate the quantum relative entropy, I need to find a basis set that spans the Hilbert
space generated by |ψrc⟩, |ψrc+rest⟩ and |ψrc+r⟩4, using the Gram–Schmidt process:

|e1⟩= |ψrc⟩ , (2.19)

|e2⟩=
|ψrc+r⟩−ωr |ψrc⟩√

1−ω2
, (2.20)

|e3⟩ ∼ |ψrc+rest⟩− (ωe−ω
2
r ωe−ωreωr) |ψrc⟩− (ωre−ωrωe) |ψrc+r⟩ , (2.21)

where ωr = ⟨ψrc|ψrc+r⟩, ωe = ⟨ψrc|ψrc+rest⟩ and ωre = ⟨ψrc+r|ψrc+rest⟩. Note |e3⟩ is correct
up to a normalization factor.

Substituting this into Eqn.(1.15) with small ε expansion, I obtain the quantum relative
entropy,

3Without loss of generality I can place the star at the origin of the coordinate system.
4For simplicity let us denote the positional dependence in the subscript.
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Fig. 2.4 Comparison between the quantum relative entropy (red) and the one for direct
imaging (blue) based on the ε , for r/σ = 0.1 and the estimated value rest/σ = 0.5. The
log-log scale emphasizes the different scaling for small ε . The gap between the two dashed
lines indicates the quantum advantage in reducing the type-II error of hypothesis testing.

D(ρ0∥ρ1) =

(
1−ω

2
r +

r2r2
est

(
r2−4log

(
1

ω2
r
−1
))

64
(

1
ω2

r
−1
) )

ε . (2.22)

In Fig 2.4, the transition from ε2 to ε highlights a significant gap between classical relative
entropy and its quantum counterpart. This disparity underscores the advantage in relative
entropy, demonstrating a substantial reduction in type-II errors through quantum estimation.
This advantage is similarly illustrated in Fig 2.5. The likelihood of false negatives diminishes
as rest diverges from r, increasing entropy. Consequently, there is a higher probability of
rejecting the current null hypothesis, indicating a narrower gap and subsequent adjustment
of the estimated distance in subsequent iterations. This adjustment parallels separating
sources for subsequent detection attempts, reducing overlap. Furthermore, the widening gap
between quantum and classical estimations showcases improvements. Notably, the dip in
the logarithmic plot may occur when the estimated value rest closely approximates r. This
suggests a tendency to accept the null hypothesis despite the smaller star-planet distance than
my estimate. Nevertheless, this highlights the resilience of the quantum method against the
hypothesis.
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Fig. 2.5 Comparison between the quantum relative entropy and the one for direct imaging
at ε = 0.1. Left figure: the entropies plotted vs rest, for r/σ = 0.5 (solid line) and r/σ = 1
(dotted line). Right figure: Plots in the log-log scale. The dip and rapid drop in the classical
entropy correspond to the fact that we are more likely to make false negative errors (entropy
dropping to zero) because of the closeness of the estimated separation value and the actual
one. The continual growth of quantum relative entropy illustrates its robustness. The gap
between quantum relative entropy and classical one is narrower when the estimated value
is smaller. This is not an issue because we only start with comparably large rest in the right
region with a large gap between the two relative entropies.

The quantum advantage is best illustrated with Fig 2.6 where the heat map is plotted with
r as the x-axis and rest as the y-axis. We can see clearly that when r is close to zero, almost
no entropy is available to stabilize the classical hypothesis test. In contrast, the quantum
counterpart with some entropy left keeps us from making type-II errors.

2.2 Coherent Estimation

In this section, I will introduce the quantum formulation of the coherent estimation problem.
To effectively carry out the estimation process, we require a device capable of generating a
photon pulse (a wavepacket) and subsequently transmitting this coherent pulse to the objects
of interest, which are positioned at slightly varying locations. Therefore, I will first elucidate
how a single photon source generates such a pulse in Section 2.2.1 and present the theoretical
findings in Section 2.2.2.

2.2.1 Super Radar Model

Range resolution is vital in target characterization and imaging. One could utilize the
interference pattern generated by photons reflected from each object to discern between
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Fig. 2.6 Classical relative entropy (left column) and Quantum relative entropy (right column)
plotted in heat map. The entropy is high in the white-blue region while low in the dark-red
region. It is clear that when r is small, rest has to be quite large for classical hypothesis testing
to maintain finite relative entropy. While the curved contour line indicates rest does not need
to be far away from the true transverse distance to make the test accurate.
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Fig. 2.7 Model for the "super radar" detection. The first few parts of the process, e.g. targeting
the photon emitter with a laser beam, sending the single photon to the χ(2) material, and
creating a heralded photon, could be precisely done in experiment [24]. In the last step, the
photon wavepacket hitting a beam splitter (pink) and interfering with the reflected pulses is an
idealized situation in my toy model. I explicitly assume that the whole interference process
takes place in a harmonic potential to stabilize the Gaussian wavepacket from spreading. The
distance between the beam splitter and the wall is l, the range distance.

two objects at slightly different locations. Hence, a singular photon pulse is essential in the
experimental setup. Consider shining a laser beam on a photon emitter like a semiconductor
quantum dot. As the excited electrons in the quantum dot return to their lower energy states,
they release energy as photons. By precise control of the quantum dot’s properties, such as
its size, shape, and composition, this process often results in the emission of a single photon.
Then, the interaction with the nonlinear crystal, a χ(2) material, will convert the high-energy
photon into two lower-energy photons (signal and idler photons) that are entangled in various
degrees of freedom, such as polarization. The heralded photon source holds particular
significance in fields such as quantum key distribution [23], where entanglement ensures the
security of the information exchange process. After confirming the available photon pulse,
we send the photon to the two objects of interest, modelled as a beam splitter and a wall (as
an infinite potential barrier), as shown in Fig 2.7. The coherent interference created from
the pulse reflected from the wall and the pulse reflected from the beam splitter could greatly
improve existing range resolution, as shown in Fig 2.8.

Following [25], let us suppose the distance between the beam splitter and the wall is l,
and the splitting happens at l0. Distinguishing the loss and sub-resolved detection pattern
relies on the interference of scattering depths along the line of sight. I assume the character
of the pulse shape is preserved by the intermediate medium, which will, in this thesis, be a
Gaussian function ψ(x). In reality, it will distort because of the frequency-dependency of the
index of refraction. However, we must recognize the energy loss during evolution, resulting
in different intensity coefficients. The resultant waveform in a unit of Rayleigh’s limit σ is
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Fig. 2.8 Schematic Diagram for Generating Interference Patterns: The process begins with a
single photon source producing a wavepacket. This wavepacket encounters a beam splitter,
creating both a reflected and a transmitted wavepacket. Upon reaching a hard wall, the
transmitted photon undergoes reflection, interfering with the previously reflected photon. A
detector is located on the left to record the interference. It is worth noting that the distance
between the wall and the beam splitter is usually greater than the width of the wavepacket,
falling within the "sub-Rayleigh" regime. Additionally, this discussion focuses solely on the
first-order process, disregarding any subsequent splitting after the initial encounter with the
beam splitter.

measured by the receiver,

|ψc⟩=
q√
n
|ψ+⟩+

1−q√
n
|ψ−⟩ , where |ψ±⟩≜

∫
∞

−∞

dxψ

(
x− l0±

l
2

)
|x⟩ . (2.23)

Here, l0 is the unknown centroid, n the normalization factor and q is the normalized
intensity, defined as the ratio of N+, the intensity of the first reflected photon, to Ntotal, the
total intensity. The main difference between this model and the Star-Exoplanet model is that
my quantum state is pure or coherent. For pure state, the Quantum Fisher Information Matrix
Q is [15]:

Qi j = 4Re[⟨∂iψ|∂ jψ⟩2−⟨∂iψ|ψ⟩⟨ψ|∂ jψ⟩]. (2.24)

By incorporating Eqn.(2.23), it becomes apparent that components |∂lψc⟩,
∣∣∂qψc

〉
, and∣∣∂l0ψc

〉
are essential for the three-parameter estimation problem. The simplest one to compute

is the intensity derivative:

∣∣∂qψc
〉
= ∂q

(
q√
n

)
|ψ+⟩+∂q

(
1−q√

n

)
|ψ−⟩ . (2.25)

For the remaining two, I can employ the technique introduced in Ref.[26]:

|ψ±⟩= exp[−i(l0∓ l/2)P] |ψ⟩ , (2.26)
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where P represents the momentum operator P =−i∂x, responsible for generating displace-
ments in the x variable. The expression for the derivative regarding centroid displacement
can be formulated as follows:

|∂sψc⟩= ∂l

(
q√
n

)
|ψ+⟩+∂l

(
1−q√

n

)
|ψ−⟩+

q√
n
|∂lψ+⟩+

1−q√
n
|∂lψ−⟩ (2.27)

= Â |ψ+⟩+ B̂ |ψ−⟩ (2.28)

where Â =− q∂ln
2n3/2 +

q√
n(

iP
2 ) and B̂ =− (1−q)∂ln

2n3/2 + 1−q√
n (
−iP

2 ).
Similarly, the derivative concerning centroid position yields:

∣∣∂l0ψc
〉
=

q√
n
(iP) |ψ+⟩+

1−q√
n
(iP) |ψ−⟩ . (2.29)

Finally deriving the integral identities, ⟨ψ±|P2 |ψ±⟩ = 1
4σ2 and ⟨ψ±|P4 |ψ±⟩ = 3

256σ6

simplifies the calculation of Quantum Fisher Information significantly.

2.2.2 Main Results

We aim to assess the precision of my quantum parameter estimation against classical meth-
ods. Typically, it is advantageous to quantify precision as Hopt/dd

θ
= 1/Varopt/dd(θ̂) for the

unknown parameter θ . The superscript "opt" and "dd" denote the optimal quantum method
and the classical direct detection approach. To initiate this comparison, let us outline the
advancements and enhancements observed in quantum optimal measurement in contrast to
classical approaches:

1. When the reflected source is weak due to loss, as q tends to 0 or 1, Hopt
l tends towards

zero. The limit suggests that discerning between two vastly different wavepackets
becomes challenging, if not impossible, especially when one pulse dominates detec-
tion. However, we anticipate a non-zero Quantum Fisher Information for normalized
intensity estimation as q approaches 0 or 1, denoted by limq→0,1 Hopt

q ̸= 0, since we
know that the intensity of one wavepacket is either one or zero. Indeed, the scaling for
brightness estimation is limq→0,1 Hopt

q ∼ l2.

2. For small separations, we expand l to higher orders:

Hopt
l (q, l)∼

(
q2−2q3 +q4) l2 +O

(
l4) , (2.30)

Hopt
q (q, l)∼ l2 +

(
−1+4q−4q2

8

)
l4 +O

(
l5
)
. (2.31)



2.2 Coherent Estimation 25

At tiny separations, Hopt
l consistently tends towards zero, demonstrating the inevitabil-

ity of the Rayleigh curse in this scenario. Notably, neither of the precision-bound
functions depends on the centroid position l0, as l0 is integrated out in the Gaussian
function. While obtaining the scaling relation for Hl0 is straightforward, this feature
is less intriguing than the other two, and thus, I relegate it to Appendix B.1 for those
interested.

3. In comparison, let us consider the expansion for direct detection:

Hdd
l (q, l)∼

(
q2−2q3 +q4) l4 +O

(
l5
)
, (2.32)

Hdd
q (q, l)∼ l6

384
+O

(
l7) . (2.33)

Discovering the crossover point of the two methods by equating their expressions to 1
proves intriguing. However, achieving this analytically might pose challenges due to the
presence of higher-order terms in both variables l and q. Instead, a more practical approach
involves utilizing a heatmap to assess the quantum enhancements directly.

In Fig 2.9, the plot provides insights into the separation information Hopt
l , varying with

both the separation l (in units of σ ) and intensities q. Imbalanced intensities lead to a drop in
precision, even at considerable separations. However, the right panel distinctly illustrates
that the quantum method, characterized by the contour Hopt

l = 0.05, exhibits a broader
distribution across intensity q, indicating its higher tolerance to intensity fluctuations.

A comparable examination is depicted in Fig 2.10, where the heatmap illustrates the
precision of intensity ratio estimation. It is worth noting that precision remains intact for
both methods even when there is a significant difference between the intensity coefficients
of the two reflected wavepackets. Moreover, the quantum advantage is demonstrated by the
finite precision value at small l/σ . Here, the optimal and classical information consistently
demonstrate scaling behaviours of l2 and l6, respectively, with a noteworthy performance
enhancement characterized by a l4 gain.

Let us delve into the "sub-Rayleigh" region, where l < σ . The regime of significance in
the log plots, as depicted in Fig 2.11, is readily discernible. Despite the marginal precision
values for both techniques, the gap between optimal imaging and direct detection highlights
the quantum advantages.

Analytically, for nearly balanced sources, Hopt
l ∝ l2 and Hdd

l ∝ l4. For unbalanced sources,
if q approaches zero, then Hopt

l ∝ q2l2, and Hdd
l ∝ q2l4. Consequently, there is consistently a

l2 improvement factor with optimal detection compared to the standard method, regardless
of the signal parameters. In practical terms, this implies that when we are below the Rayleigh
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Fig. 2.9 Precision Hl depicted in a heatmap. In the top row, the absence of contour lines is
notable. Darker regions signify significant difficulty in resolving the range distance, while
brighter areas indicate a capacity to estimate l with some degree of accuracy. The colour bar
on the right delineates the precise values of precision. Contour lines are now incorporated
into the bottom row, with white labels denoting the precision values. The advantage of the
optimal (quantum) method on the right over its classical counterpart on the left is evident
in the rounded distribution of isolines, ensuring sustained precision in estimating parameter
l. Direct imaging exhibits only a sharp peak, rendering estimation challenging in scenarios
with unequal intensity coefficients.

limit, reducing the separation by a factor of 10 necessitates detecting approximately 10,000
times more photons using a CCD camera to maintain measurement accuracy. However, for
optimal measurement, only 100 times more photons would be necessary, resulting in a 99%
reduction in detection time with the optimal detection scheme.

The enhancements in intensity estimation precision also become apparent when inspecting
the logarithmic plot, where a noticeable gap emerges between optimal measurement and the
classical method. Interestingly, the variation in intensity difference does not significantly
affect the separation estimation, as evidenced by the overlapping curves plotted.
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Fig. 2.10 The heatmap displays Hopt
q on the right column and Hdd

q on the left column. Isolines
corresponding to a precision value of 2 are observed at approximately l/σ ∼ 1.5 and l/σ ∼ 3
for quantum and classical methods, respectively, highlighting the quantum advantage. It
is worth noting that the precision values are generally higher than those for separation
estimation.
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Fig. 2.11 Precision plots in logarithmic scale against l/σ are depicted. On the left, precision
Hdd

l (represented by dotted lines) and Hopt
l (represented by solid lines) for direct detection

and optimal detection, respectively, are illustrated. Three different intensities of the two
sources are plotted and labelled on the side as 0.5 (balanced), 0.7, and 0.9. It is worth noting
that due to the symmetry of q about 0.5, only q≥ 0.5 is considered. The gap between the
dotted and dashed lines indicates a higher precision for the quantum method. While precision
for separation estimation decreases with increasingly unbalanced intensities, the precision
for intensity estimation remains almost independent of q, as evident from the overlap on the
right.



Chapter 3

Final remark

This thesis presents the fundamental quantum limits for localizing incoherent sources and
utilizing coherent sources to investigate "sub-Rayleigh" features.

For incoherent estimation, I provide an intuitive explanation of the quantum limit in
scenarios characterized by high intensity contrast. The improvement of estimation over
conventional methods is accomplished by employing hypothesis testing. I demonstrate that
the quantum counterpart of hypothesis testing yields a quadratic improvement in relative
entropy, naturally resulting in a reduction in type-II error. By progressively refining estimation
and optimizing the POVM, my algorithm aims to attain the best estimate. Due to challenges
associated with performing mode decomposition in the lab, quantum methods like SPADE
are less practical than my proposal, which only necessitates measurements in the position
basis and some optical transformations. However, the question that remains to be answered
is whether there are significant improvements in the final estimate over classical methods
rather than just a boost in type-II error. The intensity imbalance between the two photon
sources poses a challenge to SPADE methods. Further research incorporating the quantum
filter proposed by Arvidsson [27] could aid in balancing the intensities between incoherent
sources through post-selection.

Furthermore, I assess the robustness of quantum-optimal measurements in radar appli-
cations with coherent sources, evaluating their potential as viable technology theoretically
and experimentally. Utilizing Quantum Fisher Information, my model showcases significant
improvements over classical methods in estimating separation, centroid, and normalized
intensity parameters. Precise intensity estimation is particularly crucial due to setup imper-
fections leading to energy loss in pulse sequences. Exploring the impact of altering pulse
shapes could yield valuable insights into mitigating these challenges. Additionally, avenues
such as incorporating entanglement appear promising as well [28].
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Appendix A

Fisher Information

A.1 Details on Fisher Information

The main text details that Fisher Information pertains to the sensitivity towards parameter
changes. Consequently, the score of a distribution, denoted as SSS, inherently delineates the
available information. Let X represent a random variable with a distribution of p(xxx|θθθ), where
θθθ denotes specific unknown parameters of the distribution that I aim to estimate, and xxx
generally denotes observed data. The score SSS of the distribution is a random vector defined
as the gradient of the logarithm of the likelihood concerning the parameter,

SSS = ∇θθθ ln(p(xxx|θθθ)) = 1
p(xxx|θθθ)))

∇θθθ p(xxx|θθθ). (A.1)

The Classical Fisher information matrix F (θ) is defined as the covariance of the score:

F (θθθ) = Cov[SSS]. (A.2)

Note that for single parameter estimation, this reduces the variance of the score. Explicitly,
the entries in this matrix are given by:

F (θθθ)i j =
∫

∂θi ln(p(xxx|θθθ))∂θ j ln(p(xxx|θθθ))
p(xxx|θθθ)

dxxx. (A.3)

The calculation of Quantum Fisher Information involves a more intricate derivation, which
revolves around determining the optimal measurement set. The optimal measure is found by
computing the Symmetric Logarithmic Derivative (SLD). Let’s consider a density matrix
ρ̂(θθθ) parameterized by θµ . The SLD Lµ is defined as a Hermitian operator that satisfies the
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Sylvester equation:

2
∂ ρ̂θθθ

∂θµ

= Lµ ρ̂θθθ + ρ̂θθθ Lµ . (A.4)

If we write the density matrix in the eigenbasis ρ̂(θθθ) = ∑m ρm |Ψm⟩⟨Ψm|, the SLD operator
explicitly following [29],

Lµ = 2 ∑
α,β

ρα+ρβ ̸=0

〈
Ψα

∣∣ ∂ ρ̂

∂θµ

∣∣Ψβ

〉
ρα +ρβ

∣∣Ψα

〉〈
Ψβ

∣∣ . (A.5)

And the Quantum Fisher Information Matrix is expressed as Qµν = ReTr(ρ̂(θθθ)LµLν).

A.2 Cramér-Rao lower bound

To simplify the derivation, I consider a single parameter estimation process. For notational
simplicity, I omit the explicit variable dependence of p(x|θ) and denote it instead as just p.
Moreover, ∂θ will be used to denote ∂

∂θ
. Let us first show that the score S is zero-mean.

E[S] =
∫

p · [∂θ ln(p)]dx

=
∫

p ·
[

1
p

∂θ p
]

dx

= ∂θ

∫
p dx

= ∂θ (1) = 0.

Using the zero-mean property of the score:

F(θ) =Var[S] = E[S2] =
∫

p · [∂θ ln(p)]2 dx. (A.6)

Now we consider the unbiased estimator θ̂ , from which I get:

∂θ

∫
(θ̂ −θ)p dx = 0,

−
∫

pdx+
∫
(θ̂ −θ)∂θ p dx = 0,∫

(θ̂ −θ)∂θ p dx = 1.



A.3 Advantage of SPADE and Partial coherent source 34

Writing the derivative as the logarithmic function, ∂θ ln p = 1
p∂θ p, above expression becomes

∫
(θ̂ −θ)p∂θ ln p dx = 1.

Squaring the integral and applying the Cauchy–Schwarz inequality, one obtains

(∫
((θ̂ −θ)

√
p)(
√

p∂θ ln p)dx
)2

≤ (
∫
(θ̂ −θ)2 pdx)(

∫
p[∂θ ln p]2dx). (A.7)

The left-hand side squares to be one, and the first bracket on the right gives us the variance
of the unbiased estimator, while the second bracket is the definition for Fisher Information.
Therefore, I arrive at Var(θ̂)≥ 1

F(θ) for a single measurement.

A.3 Advantage of SPADE and Partial coherent source

Assuming the Gaussian PSF, the q-th Hermite-Gauss (HG) mode in position basis is:

∣∣φq
〉
=

1
(2πσ2)1/4

1√
2qq!

∫
dxHq

(
x√
2σ

)
e−

x2

4σ2 |x⟩ . (A.8)

By simple integration and completing the square, I arrive at the

〈
φq
∣∣ψ(x)

〉
=

e−
X2

8σ2

√
q!

(
x

2σ

)q

, (A.9)

where ψ(x) is the PSF in the detection process. Defining α = x
2σ

and substituting in the
expansion coefficients I have:

|ψ(x)⟩= e−
1
2 α2

∞

∑
q=0

αq
√

q!

∣∣φq
〉
. (A.10)

Consider a simple two-source model with Eqn.(1.8) and θ being the separation, the probabil-
ity of detecting a photon in the qth HG mode is given by the Poisson distribution:

p(q) =
Qq

q!
e−Q, where Q =

θ 2

16σ2 . (A.11)
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To get the Fisher Information, I begin by writing out explicitly,

d
dθ

(ln p(q)) =
d

dθ
(−Q+q ln(Q)− ln(q!))

=−Q′+
q
Q

Q′

= (
q
Q
−1)

2
16σ2 θ

= 2(q−Q)/θ .

(A.12)

Then from Eqn.(A.3):

FHG =
∞

∑
q=0

p(q)
[

d
dθ

ln(p(q))
]

=
∞

∑
q=0

p(q) [2(q−Q)/θ ]

=
4

θ 2 Var(q)

=
1

4σ2 .

(A.13)

The conventional imaging method gives the probability distribution of intensity in position
basis:

Pintensity(x) =
1
2

e
−1

2σ2 (x− θ

2 )
2

+ e
−1

2σ2 (x+ θ

2 )
2

(2πσ2)
1
2

. (A.14)

It is interesting to see what would happen if I were to add in some coherence characterized
by µ , with the intensity being:

Pµ

intensity(x) =
1
2

e
−1
σ2 (x− θ

2 )
2

+ e
−1
σ2 (x+ θ

2 )
2

+2Re(µ)e
−1
σ2

(
x2+ θ2

4

)
(2πσ2)

1
2

. (A.15)

Then we can see that in some regions, the Fisher information for direct imaging is greater
than the quantum method as in the top of Fig A.1.

Finally, I used Maximal likelihood to differentiate the separation. We can see in the
bottom of Fig A.1 that the error increases rapidly as the distance between the sources
decreases.
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Fig. A.1 Top: Fisher information for imaging measurements for varying degrees (colors) of
source coherence. The orange line shows the optimal quantum fisher information. Bottom:
Calculated the Maximum Likelihood Estimator(MLE) θ̂ of the source separation for each of
the simulated direct detection measurements (N = 105). The plot shows the fractional error
θ̂−θ

θ
as a function of the source separation in a unit of σ for different coherence values.
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Additional derivations

B.1 Analysis on Centroid estimation for Super Radar

Here, I conduct a similar analysis to that outlined in Sec. 2.2.2 regarding centroid-position
estimation, focusing directly on the variance. The variances Varopt

l0
and Vardd

l0 for the optimal
quantum method and classical direct detection are depicted in a heatmap (refer to Fig B.1).

Notably, the black region, indicating slight variance and precise estimation, appears to
diminish from l/σ = 4 to l/σ = 3, only to revive when l/σ < 2, under similar intensity
profiles. This revival directly demonstrates the superior efficacy of quantum imaging com-
pared to the consistently high variance values observed in the small-separation region for the
classical approach. Moreover, the overall variance scale is smaller by a factor of 3 for the
quantum method. However, in severe energy loss (unequal intensities), neither method can
precisely estimate the central position. Physically, according to my model, this implies that
excessive energy loss hampers the ability to estimate the beam splitter’s position accurately.

B.2 Derivation on Eqn.(2.16)

Let us further simplify the notation in Sec 2.1.2:

ψstar(x− rc)→ ψ, (B.1)

ψplanet(x− rc− rest)→ ψ̂, (B.2)

ψplanet(x− rc− r)→ ψ
′. (B.3)
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Fig. B.1 A heatmap illustrating the variance of the centroid (beam splitter) location esti-
mation in the ’super radar’ model. The symmetrical mirroring around q = 0.5 arises from
the underlying system’s symmetry. Darker colours indicate higher precision in parameter
estimation, while lighter shades suggest lower precision during estimation. Notably, the
quantum method exhibits lower variance on the left than classical imaging."

The full expression for the classical relative entropy for the two hypotheses is

D(p0∥p1) =
∫

dxp0(x) [ln(p0(x))− ln(p1(x))]

=
∫

dx((1− ε)ψ2 + εψ̂
2)

[
ln
(
(1− ε)ψ2 + εψ̂

2
)
− ln

(
(1− ε)ψ2 + εψ

′2
)]

=
∫

dx((1− ε)ψ2 + εψ̂
2)

[
lnψ

2 + ln
(
(1− ε)+ ε

ψ̂2

ψ2

)
− lnψ

2− ln
(
(1− ε)+ ε

ψ ′2

ψ2

)]
=
∫

dx((1− ε)ψ2 + εψ̂
2)(

ψ̂2

ψ2 −
ψ ′2

ψ2 )

[
ε− ε2

2
(
ψ̂2

ψ2 +
ψ ′2

ψ2 −2)
]
,

where in the last line, I have used the small expansion ln(1+ x) = x− x2

2 and regrouped

similar terms. Typical terms like
∫

dx ψ̂2

ψ2 can be evaluated by completing squares in the
Gaussian integral, e.g.

ψ̂2

ψ2 =
e−(x−rc−rest)

2
/2

e−(x−rc)2
/2

= e−r2
est/2erest(x−rc),
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where the second part of the exponential introduces a shift in the Gaussian integral:∫
dxe−(x−rc−r)2/2erest(x−rc)

=
∫

dxe−(x−r)2/2erestx

=
∫

dxe−(x−(rest+r))2/2e−(rest+r)2/2e−r2/2

∼ e−r2
est/2erestr.

Putting this all together and ignoring all higher order of ε , I finally have the expression for
Eqn.(2.16).
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Numerical results

C.1 Simulation

I have experimented with different intensity ratios by changing the transmitting coefficient
of the beam splitter to compare the analytical results with the numerical ones as shown in
Fig C.1. To dynamically simulate the evolution, I use the "Finite Difference Method" with
time-dependent Shrödinger’s equation (TDSE) in Python:

iℏ
∂

∂ t
ψ(x, t) =− ℏ2

2m
∂ 2

∂x2 ψ(x, t)+V (x)ψ(x, t). (C.1)

The goal of the Finite Difference Method is to take continuous derivatives, such as those
found in Schrödinger’s equation, ∂

∂ t ψ(x, t) and ∂ 2

∂x2 ψ(x, t), and transform them into discrete,
computable functions.

To do this, let us go back to the fundamental definition of differentiation, with the
definition of a derivative:

d
dx

f (x) = lim
∆x→0

f (x+∆x)− f (x)
∆x

, (C.2)

where ∆x is infinitesimally small. The issue lies in the limitation of performing this task on a
computer. However, I can employ an approach involving exceedingly minute, finite steps to
approximate the derivative. This method, known as the "Finite Difference Method", derives
its name from this process.

Utilizing this method, I can ascertain the first-time derivative of the wave function, which
appears on the left side of the Schrödinger’s equation:

∂

∂ t
ψ(x, t) = lim

∆t→0

ψ(x, t +∆t)−ψ(x, t)
∆t

. (C.3)
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(a) Intensity ratio equals 1. (b) Intensity ratio equals 2. (c) Intensity ratio equals 3.

Fig. C.1 Three initial conditions for wavepacket evolution with a snapshot taken after the
splitting and just before hitting the wall. Notice that the beam splitter (red) in the middle of
two wavepackets is too small to see; thus, I have scaled it up for illustration. Moreover, the
black space on the right has infinite potential corresponding to the wall.

Now, let us take the second spatial derivative present on the right-hand side of Schrödinger’s
equation. The first step is to find the first spatial derivative. Let us repeat the same process I
did for the time derivative:

∂

∂x
ψ(x, t) = lim

∆x→0

ψ(x+∆x, t)−ψ(x, t)
∆x

. (C.4)

In my animation, time progresses unidirectionally, displaying asymmetrical behaviour.
Conversely, space in my animation spans two directions (+x and−x). The derivative we have
been employing thus far exhibits this asymmetry. To proceed, we will require a symmetric
definition for the derivative:

d
dx

f (x) = lim
∆x→0

f (x+∆x)− f (x−∆x)
2∆x

. (C.5)

Now, I can find the first spatial derivative of ψ(x, t):

ψ
′(x, t) =

∂

∂x
ψ(x, t) = lim

∆x→0

ψ(x+∆x, t)−ψ(x−∆x, t)
2∆x

. (C.6)



C.1 Simulation 42

And the second derivative:

∂ 2

∂x2 ψ(x, t) =
∂

∂x
ψ
′(x, t) = lim

∆x→0

ψ ′(x+∆x, t)−ψ ′(x−∆x, t)
2∆x

= lim
∆x→0

ψ(x+2∆x,t)−ψ(x,t)
2∆x − ψ(x,t)−ψ(x−2∆x,t)

2∆x
2∆x

= lim
∆x→0

ψ(x+2∆x, t)−2ψ(x, t)+ψ(x−2∆x, t)
4∆x2

= lim
∆x→0

ψ(x+∆x, t)−2ψ(x, t)+ψ(x−∆x, t)
∆x2 .

I will drop the limits from here onwards to reflect that I use finite steps. I can now rewrite the
Schrödinger’s equation with my substitutes for the derivative:

iℏ
ψ(x, t +∆t)−ψ(x, t)

∆t

=− ℏ2

2m

(
ψ(x+∆x, t)−2ψ(x, t)+ψ(x−∆x, t)

∆x2

)
+V (x)ψ(x, t).

And rearrange this formula, such that ψ(x, t +∆t) is isolated:

ψ(x, t +∆t) =
(

i
2m

)(
∆t

∆x2

)
(ψ(x+∆x, t)−2ψ(x, t)+ψ(x−∆x, t))

−
(

i
ℏ

)
(∆t)V (x)ψ(x, t)+ψ(x, t)

To make the updates more accurate, I used Runge–Kutta (RK) methods to the fourth order:

ψ(x, t +∆t) = ψ(x, t)+
∆t
6
(k1+2∗ k2+2∗ k3+ k4)

k1 = ψ(x, t)

k2 = ψ(x, t +∆t/2∗ k1)

k3 = ψ(x, t +∆t/2∗ k2)

k4 = ψ(x, t +∆t ∗ k3)

To numerically simulate a quantum system using the TDSE, I worked on a discrete grid
of NG (5000 equally-spaced points with spacing, ∆x). To do this, I have to find a way to
discretize the various components of the TDSE. The wave function at a point in time, ψ(t),
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and potential, V , can be discretized as vectors of length NG in which each element contains
the value of the wave function or the potential at the corresponding point on this grid. Discrete
Laplace operator can be given as convolution with the kernel:[

1 −2 1
]
,

which results in a symmetric tridiagonal Toeplitz matrix with the finite-difference coefficients
along the diagonals. The discrete Laplace operator is then given by:

∇
2 =

1
∆x2


−2 1
1 −2 1

. . .

1 −2 1
1 −2

 ,

where ∆x is the spacing between points. If I have a potential, V =
[
V0 V1 . . . VN

]
, then

the full Hamiltonian operator in matrix form is given by:

Ĥ =
−ℏ2

2m∆x2


−2 1
1 −2 1

. . .

1 −2 1
1 −2

+


V0

V1
. . .

VN−1

VN

 .

The potential is a harmonic well (stabilizing the Gaussian wavepacket from spreading)
plus a delta function in the middle (beam splitter). Note: Because of the way I define the
finite differences at the boundaries, the wave function will reflect ultimately at the boundaries.
The edges of the simulation are effectively infinite-potential barriers.

The formula for the Gaussian pulse I used is:

ψ(x,0)∼
(
eip0x)(e−

(
x−x0

2σ

)2
)
, (C.7)

where p0 is the initial momentum of my wavepacket. One limitation of real computers is that
numbers and operations are only sometimes precise, as computers are constrained by how
much memory they can assign to any given number. So, the safest approach for normalization
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Fig. C.2 Time evolved Quantum Fisher Information (QFI) based on the Gaussian pulse for
different initial intensity ratios of the forward and reflected wavepacket (controlled by the
height of the beam splitter).

is to apply the following conditions:∫
∞

−∞

|ψ(x, t)|2 dx = 1

directly in discretized space:

∑ |ψ(x, t)|2 dx = 1.

As I recursively apply the normalization, numerical instability is prevented. The combined
plot is shown in Fig C.2, where different solid lines indicate how the Quantum Fisher
Information changes for pulses with various intensity differences with time. The dotted
analytical line is plotted based on Eqn.(2.30) with scaling to fit the maximum Quantum
Fisher Information obtained during the evolution.


	Table of contents
	1 Background
	1.1 Introduction
	1.2 Background
	1.2.1 Quantum Formalism
	1.2.2 Quantum Metrology
	1.2.3 Hypothesis Testing


	2 Main Result
	2.1 Incoherent Estimation
	2.1.1 Star-Exoplanet Model
	2.1.2 Result

	2.2 Coherent Estimation
	2.2.1 Super Radar Model
	2.2.2 Main Results


	3 Final remark
	References
	Appendix A Fisher Information
	A.1 Details on Fisher Information
	A.2 Cramér-Rao lower bound
	A.3 Advantage of SPADE and Partial coherent source

	Appendix B Additional derivations
	B.1 Analysis on Centroid estimation for Super Radar
	B.2 Derivation on Eqn.(2.16)

	Appendix C Numerical results
	C.1 Simulation


